↳ Prolog
↳ PrologToPiTRSProof
cnfequiv_in(X, X) → cnfequiv_out(X, X)
cnfequiv_in(X, Y) → U1(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U1(X, Y, transform_out(X, Z)) → U2(X, Y, cnfequiv_in(Z, Y))
U2(X, Y, cnfequiv_out(Z, Y)) → cnfequiv_out(X, Y)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
cnfequiv_in(X, X) → cnfequiv_out(X, X)
cnfequiv_in(X, Y) → U1(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U1(X, Y, transform_out(X, Z)) → U2(X, Y, cnfequiv_in(Z, Y))
U2(X, Y, cnfequiv_out(Z, Y)) → cnfequiv_out(X, Y)
CNFEQUIV_IN(X, Y) → U11(X, Y, transform_in(X, Z))
CNFEQUIV_IN(X, Y) → TRANSFORM_IN(X, Z)
TRANSFORM_IN(n(X1), n(X2)) → U71(X1, X2, transform_in(X1, X2))
TRANSFORM_IN(n(X1), n(X2)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(a(X, Y1), a(X, Y2)) → U61(X, Y1, Y2, transform_in(Y1, Y2))
TRANSFORM_IN(a(X, Y1), a(X, Y2)) → TRANSFORM_IN(Y1, Y2)
TRANSFORM_IN(a(X1, Y), a(X2, Y)) → U51(X1, Y, X2, transform_in(X1, X2))
TRANSFORM_IN(a(X1, Y), a(X2, Y)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(o(X, Y1), o(X, Y2)) → U41(X, Y1, Y2, transform_in(Y1, Y2))
TRANSFORM_IN(o(X, Y1), o(X, Y2)) → TRANSFORM_IN(Y1, Y2)
TRANSFORM_IN(o(X1, Y), o(X2, Y)) → U31(X1, Y, X2, transform_in(X1, X2))
TRANSFORM_IN(o(X1, Y), o(X2, Y)) → TRANSFORM_IN(X1, X2)
U11(X, Y, transform_out(X, Z)) → U21(X, Y, cnfequiv_in(Z, Y))
U11(X, Y, transform_out(X, Z)) → CNFEQUIV_IN(Z, Y)
cnfequiv_in(X, X) → cnfequiv_out(X, X)
cnfequiv_in(X, Y) → U1(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U1(X, Y, transform_out(X, Z)) → U2(X, Y, cnfequiv_in(Z, Y))
U2(X, Y, cnfequiv_out(Z, Y)) → cnfequiv_out(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
CNFEQUIV_IN(X, Y) → U11(X, Y, transform_in(X, Z))
CNFEQUIV_IN(X, Y) → TRANSFORM_IN(X, Z)
TRANSFORM_IN(n(X1), n(X2)) → U71(X1, X2, transform_in(X1, X2))
TRANSFORM_IN(n(X1), n(X2)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(a(X, Y1), a(X, Y2)) → U61(X, Y1, Y2, transform_in(Y1, Y2))
TRANSFORM_IN(a(X, Y1), a(X, Y2)) → TRANSFORM_IN(Y1, Y2)
TRANSFORM_IN(a(X1, Y), a(X2, Y)) → U51(X1, Y, X2, transform_in(X1, X2))
TRANSFORM_IN(a(X1, Y), a(X2, Y)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(o(X, Y1), o(X, Y2)) → U41(X, Y1, Y2, transform_in(Y1, Y2))
TRANSFORM_IN(o(X, Y1), o(X, Y2)) → TRANSFORM_IN(Y1, Y2)
TRANSFORM_IN(o(X1, Y), o(X2, Y)) → U31(X1, Y, X2, transform_in(X1, X2))
TRANSFORM_IN(o(X1, Y), o(X2, Y)) → TRANSFORM_IN(X1, X2)
U11(X, Y, transform_out(X, Z)) → U21(X, Y, cnfequiv_in(Z, Y))
U11(X, Y, transform_out(X, Z)) → CNFEQUIV_IN(Z, Y)
cnfequiv_in(X, X) → cnfequiv_out(X, X)
cnfequiv_in(X, Y) → U1(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U1(X, Y, transform_out(X, Z)) → U2(X, Y, cnfequiv_in(Z, Y))
U2(X, Y, cnfequiv_out(Z, Y)) → cnfequiv_out(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
TRANSFORM_IN(n(X1), n(X2)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(a(X, Y1), a(X, Y2)) → TRANSFORM_IN(Y1, Y2)
TRANSFORM_IN(o(X1, Y), o(X2, Y)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(a(X1, Y), a(X2, Y)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(o(X, Y1), o(X, Y2)) → TRANSFORM_IN(Y1, Y2)
cnfequiv_in(X, X) → cnfequiv_out(X, X)
cnfequiv_in(X, Y) → U1(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U1(X, Y, transform_out(X, Z)) → U2(X, Y, cnfequiv_in(Z, Y))
U2(X, Y, cnfequiv_out(Z, Y)) → cnfequiv_out(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
TRANSFORM_IN(n(X1), n(X2)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(a(X, Y1), a(X, Y2)) → TRANSFORM_IN(Y1, Y2)
TRANSFORM_IN(o(X1, Y), o(X2, Y)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(a(X1, Y), a(X2, Y)) → TRANSFORM_IN(X1, X2)
TRANSFORM_IN(o(X, Y1), o(X, Y2)) → TRANSFORM_IN(Y1, Y2)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
TRANSFORM_IN(o(X1, Y)) → TRANSFORM_IN(X1)
TRANSFORM_IN(a(X, Y1)) → TRANSFORM_IN(Y1)
TRANSFORM_IN(a(X1, Y)) → TRANSFORM_IN(X1)
TRANSFORM_IN(o(X, Y1)) → TRANSFORM_IN(Y1)
TRANSFORM_IN(n(X1)) → TRANSFORM_IN(X1)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
U11(X, Y, transform_out(X, Z)) → CNFEQUIV_IN(Z, Y)
CNFEQUIV_IN(X, Y) → U11(X, Y, transform_in(X, Z))
cnfequiv_in(X, X) → cnfequiv_out(X, X)
cnfequiv_in(X, Y) → U1(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U1(X, Y, transform_out(X, Z)) → U2(X, Y, cnfequiv_in(Z, Y))
U2(X, Y, cnfequiv_out(Z, Y)) → cnfequiv_out(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
U11(X, Y, transform_out(X, Z)) → CNFEQUIV_IN(Z, Y)
CNFEQUIV_IN(X, Y) → U11(X, Y, transform_in(X, Z))
transform_in(n(X1), n(X2)) → U7(X1, X2, transform_in(X1, X2))
transform_in(a(X, Y1), a(X, Y2)) → U6(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(a(X1, Y), a(X2, Y)) → U5(X1, Y, X2, transform_in(X1, X2))
transform_in(o(X, Y1), o(X, Y2)) → U4(X, Y1, Y2, transform_in(Y1, Y2))
transform_in(o(X1, Y), o(X2, Y)) → U3(X1, Y, X2, transform_in(X1, X2))
transform_in(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))) → transform_out(o(a(X, Y), Z), a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))) → transform_out(o(X, a(Y, Z)), a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y)), a(n(X), n(Y))) → transform_out(n(o(X, Y)), a(n(X), n(Y)))
transform_in(n(a(X, Y)), o(n(X), n(Y))) → transform_out(n(a(X, Y)), o(n(X), n(Y)))
transform_in(n(n(X)), X) → transform_out(n(n(X)), X)
U7(X1, X2, transform_out(X1, X2)) → transform_out(n(X1), n(X2))
U6(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(a(X, Y1), a(X, Y2))
U5(X1, Y, X2, transform_out(X1, X2)) → transform_out(a(X1, Y), a(X2, Y))
U4(X, Y1, Y2, transform_out(Y1, Y2)) → transform_out(o(X, Y1), o(X, Y2))
U3(X1, Y, X2, transform_out(X1, X2)) → transform_out(o(X1, Y), o(X2, Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
U11(transform_out(Z)) → CNFEQUIV_IN(Z)
CNFEQUIV_IN(X) → U11(transform_in(X))
transform_in(n(X1)) → U7(transform_in(X1))
transform_in(a(X, Y1)) → U6(X, transform_in(Y1))
transform_in(a(X1, Y)) → U5(Y, transform_in(X1))
transform_in(o(X, Y1)) → U4(X, transform_in(Y1))
transform_in(o(X1, Y)) → U3(Y, transform_in(X1))
transform_in(o(a(X, Y), Z)) → transform_out(a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z))) → transform_out(a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y))) → transform_out(a(n(X), n(Y)))
transform_in(n(a(X, Y))) → transform_out(o(n(X), n(Y)))
transform_in(n(n(X))) → transform_out(X)
U7(transform_out(X2)) → transform_out(n(X2))
U6(X, transform_out(Y2)) → transform_out(a(X, Y2))
U5(Y, transform_out(X2)) → transform_out(a(X2, Y))
U4(X, transform_out(Y2)) → transform_out(o(X, Y2))
U3(Y, transform_out(X2)) → transform_out(o(X2, Y))
transform_in(x0)
U7(x0)
U6(x0, x1)
U5(x0, x1)
U4(x0, x1)
U3(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U11(transform_out(Z)) → CNFEQUIV_IN(Z)
CNFEQUIV_IN(X) → U11(transform_in(X))
[n1, U71] > [o2, U42, U32] > [a2, U62, U52] > transformout1 > CNFEQUIVIN1 > U1^11
U71: [1]
U52: multiset
CNFEQUIVIN1: [1]
U62: multiset
transformout1: multiset
U42: [1,2]
a2: multiset
U1^11: multiset
n1: [1]
o2: [1,2]
U32: [2,1]
transform_in(o(X, Y1)) → U4(X, transform_in(Y1))
transform_in(n(a(X, Y))) → transform_out(o(n(X), n(Y)))
U6(X, transform_out(Y2)) → transform_out(a(X, Y2))
transform_in(a(X1, Y)) → U5(Y, transform_in(X1))
transform_in(n(o(X, Y))) → transform_out(a(n(X), n(Y)))
U5(Y, transform_out(X2)) → transform_out(a(X2, Y))
transform_in(a(X, Y1)) → U6(X, transform_in(Y1))
transform_in(o(X, a(Y, Z))) → transform_out(a(o(X, Y), o(X, Z)))
U4(X, transform_out(Y2)) → transform_out(o(X, Y2))
transform_in(n(n(X))) → transform_out(X)
transform_in(n(X1)) → U7(transform_in(X1))
transform_in(o(a(X, Y), Z)) → transform_out(a(o(X, Z), o(Y, Z)))
transform_in(o(X1, Y)) → U3(Y, transform_in(X1))
U3(Y, transform_out(X2)) → transform_out(o(X2, Y))
U7(transform_out(X2)) → transform_out(n(X2))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
transform_in(n(X1)) → U7(transform_in(X1))
transform_in(a(X, Y1)) → U6(X, transform_in(Y1))
transform_in(a(X1, Y)) → U5(Y, transform_in(X1))
transform_in(o(X, Y1)) → U4(X, transform_in(Y1))
transform_in(o(X1, Y)) → U3(Y, transform_in(X1))
transform_in(o(a(X, Y), Z)) → transform_out(a(o(X, Z), o(Y, Z)))
transform_in(o(X, a(Y, Z))) → transform_out(a(o(X, Y), o(X, Z)))
transform_in(n(o(X, Y))) → transform_out(a(n(X), n(Y)))
transform_in(n(a(X, Y))) → transform_out(o(n(X), n(Y)))
transform_in(n(n(X))) → transform_out(X)
U7(transform_out(X2)) → transform_out(n(X2))
U6(X, transform_out(Y2)) → transform_out(a(X, Y2))
U5(Y, transform_out(X2)) → transform_out(a(X2, Y))
U4(X, transform_out(Y2)) → transform_out(o(X, Y2))
U3(Y, transform_out(X2)) → transform_out(o(X2, Y))
transform_in(x0)
U7(x0)
U6(x0, x1)
U5(x0, x1)
U4(x0, x1)
U3(x0, x1)